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Abstract. We applied QCD light-cone sum rules to estimate power corrections to the helicity-conserving
amplitude in the process γ∗γ → ππ. We found that above Q2 ∼ 4GeV2 power corrections are numerically
small and the twist-2 part dominates.The amplitude can be reliably calculated in this region using models
of 2π distribution amplitudes as input. We found that the magnitude of the NLO corrections depends
rather strongly on the normalization of the gluonic distribution amplitude.

1 Introduction

Hadron production in the reaction γ∗γ → hadron(s) has
been a subject of considerable interest for a long time,
both from the experimental [1,2] and theoretical [3–5]
points of view. The key role in the QCD description of such
processes is played by the QCD factorization theorem. For
example, QCD factorization has been successfully applied
to the reaction γ∗γ → π0 [4,5]. The F γπ(Q2) form-factor
data obtained by the CELLO and CLEO collaborations
are in a good agreement with the available QCD analysis;
see for example [6–8].
Recently it has been proposed [9,10] to investigate a

similar process, γ∗γ → ππ, when the two-pion state has
a small invariant mass. It has been argued that QCD fac-
torization applies to this case as well [11]. The resulting
amplitude depends on new non-perturbative objects, the
so-called two-pion distribution amplitudes (2πDAs). They
are given by matrix elements of twist-2 QCD string oper-
ators between the vacuum and the two-pion state [10,12].
Moreover, 2πDAs can be related by the crossing symme-
try to skewed parton distributions [13,14] which recently
have been subject of considerable interest.
Furthermore, in a recent paper [15] it has been argued

that experimental studies of 2π production cross-section
are possible with existing e+e− facilities.
Formally, the dominance of the leading-twist ampli-

tude is guaranteed only at a very large Q2. For the process
γ∗γ → ππ the bulk of the twist-2 amplitude arises from
the handbag diagram. In analogy with the γ∗γ → π0 reac-
tion one expects that the leading-twist contribution dom-
inates the amplitude even for moderate values of Q2 ∼ 4–
10GeV2. For lower values of Q2, the power-suppressed
corrections are certainly important. Note that prelimi-

nary estimates show that most of the γ∗γ → ππ events
which have been seen in the CLEO data are in the region
Q2 ∼ 1–5GeV2 [2,16]. In this region a reliable estimate
of the amplitude including the power-suppressed contri-
butions is crucial.
From the theoretical point of view problems encoun-

tered in an analysis of power-suppressed contributions to
two-pion and one-pion production amplitudes are very
similar. Terms suppressed as 1/Q2 can arise from differ-
ent space-time configurations. The production of states
with more than two partons by interaction of two elec-
tromagnetic currents at small transverse distances can be
accounted for by the standard operator product expan-
sion (OPE) technique. However, as the second photon is
real, there is yet another configuration which results in
a power-suppressed correction. The real photon can turn
into hadrons long before the interaction with the virtual
one. It occurs at large transverse distances between two
electromagnetic currents. Such a non-factorizable term is
known in the literature as the “end-point” or “soft” con-
tribution.
In this paper we use the light-cone sum rule (LCSR)

method to evaluate the γ∗γ → ππ amplitude, including
the power-suppressed contributions. The main advantage
of this technique is that it allows one to take into ac-
count both factorizable and non-factorizable corrections.
Recently, LCSRs were successfully applied to describe dif-
ferent pion form factors [7,17,18] in a Q2 range from 1 to
∼ 10GeV2.
This paper is organized as follows. In the following sec-

tion we present the definition of the γ∗γ → ππ amplitude
and set up the notation. In Sect. 3 models of 2π distri-
bution amplitudes are introduced. Sections 4 and 5 are
devoted to a discussion of the LCSRs to the LO and NLO
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accuracy, respectively. In Sect. 6 we present a numerical
analysis. Finally, we summarize our article. The appendix
contains definitions of the NLO Wilson coefficient func-
tions.

2 General definitions

The kinematics of the reaction γ∗(q)γ(q′) → π(k1)π(k2)
can conveniently be described in terms of a pair of light-
like vectors p, z which obey

p2 = z2 = 0, p · z �= 0, (1)

and define longitudinal directions. Here p · z = pµz
µ. Let

P and k denote the total and relative momenta of the π
meson pair, respectively,

P 2 = (k1 + k2)2 =W 2,

k2 = (k1 − k2)2 = 4m2
π −W 2,

P · k = 0. (2)

The initial and final states momenta can be decomposed
as

q = p− Q2

2(p · z)z, q2 = −Q2 q′ =
Q2 +W 2

2(p · z) z,

q′2 = 0, P = q + q′ = p+
W 2

2(p · z)z, P 2 =W 2,

k = ξp− ξW 2

2(p · z)z + k⊥. (3)

The longitudinal momentum distribution of the pions is
described by the variable ξ = (k · z)/(p · z). Alternatively,

ξ = β cos θcm,

where θcm is the polar angle of the pion momentum in
the CM frame with respect to the direction of the total
momentum P , and β is the velocity of produced pions in
the center-of-mass frame

β =

√
1− 4m

2
π

W 2 .

The amplitude of hard photo-production of two pions is
defined by the following matrix element between the vac-
uum and the two-pion state:

Tµν = i
∫
d4xe−ix·q̄〈2π(P, k)|TJµ(x/2)Jν(−x/2)|0〉,

q̄ =
1
2
(q − q′), (4)

where Jµ(x) denotes the quark electromagnetic current.
Hard photo-production corresponds to the limit Q2 	
W 2 ≥ Λ2

QCD where the amplitude (4) can be represented
as an expansion in terms of powers of 1/Q. According
to the factorization theorem the leading-twist term in the
expansion can be written as a convolution of hard and soft

blocks. The coefficient functions can be calculated from
appropriate partonic subprocesses γ∗+ γ → q̄+ q or γ∗+
γ → g + g.
According to the analysis of [19] to the leading-twist

accuracy the amplitude Tµν is a sum of two terms

Tµν(q, q′, P, k) =
i
2
(−gµν)TT

γππ
0 (q, q′, P, k)

+
i
2
k

(µ
⊥ k

ν)
⊥

W 2 T γππ
2 (q, q′, P, k), (5)

where

(−gµν)T =
(
pµzν + pνzµ

p · z − gµν

)

is the metric tensor in the transverse space, and k(µ
⊥ k

ν)
⊥

denotes the traceless, symmetric tensor product of the rel-
ative transverse momenta (27).
The leading-order, leading-twist amplitude T γππ

0 de-
scribes scattering of two photons with equal helicities, re-
lated by crossing to the photon helicity-conserving DVCS
on a pion. At the NLO there is a new contribution T γππ

2
from collisions of photons with opposite helicities, related
to the photon helicity-flip contribution to the DVCS [20].
In terms of the operator product expansion the latter am-
plitude singles out a twist-2 tensor gluon operator which
cannot be studied in deep-inelastic scattering (DIS) on a
pion (or nucleon) target [19].
Note that as the amplitude Tµν is dimensionless, the

twist-2 amplitude T γππ
0 depends on Q2 only logarithmi-

cally through the running coupling and QCD evolution
effects. To see this it is convenient to develop appropriate
power counting in an infinite momentum frame. For def-
initeness we assume that the pion pair is moving in the
positive ẑ direction and p+ and z− are the only nonzero
component of p and z, respectively. Then the infinite mo-
mentum frame can be understood as p+ ∼ Q → ∞ with
a fixed (p · z) ∼ 1. From (3) it follows that in this frame
(k ·z) ∼ 1 and k⊥ ∼ Q0. This determines the power count-
ing in Q for all twist-2 amplitudes and from (5) we find
that T γππ

0 is O(1) as far as powers of Q are concerned.
In this paper we consider power corrections to the am-

plitude T γππ
0 only. This is expected to be the most impor-

tant term numerically as it appears already at the Born
level. To the NLO accuracy one has [19]

T γππ
0 = T pert

0 =
(∑

e2q

)∫ 1

0
duΦQ(u, ξ,W 2)

×
[
C0

q (u) +
αS(Q2)

4π C1
q (u)

]
−
(∑

e2q

)∫ 1

0
duΦG(u, ξ,W 2)

×
[

αS(Q2)
4π C1

g (u)
]
. (6)

The coefficient functions C0
q , C

1
q , C

1
g can be found in [19].

The quark and gluon 2πDAs are defined as matrix ele-
ments of the light-cone string operators:

〈ππ(P, k)
∣∣∣∣∣ 1Nf

∑
q

q̄(z)ẑq(−z)
∣∣∣∣∣ 0〉 = (p · z)
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×
∫ 1

0
duΦQ(u, ξ,W 2)ei(2u−1)(p·z), (7)

〈
ππ(P, k)

∣∣zµzνGµ
α(z)G

αν(−z)∣∣ 0〉 = (p · z)2

×
∫ 1

0
duΦG(u, ξ,W 2)ei(2u−1)(p·z). (8)

Note that the distribution amplitudes ΦQ(u, ξ,W 2) and
ΦG(u, ξ,W 2) depend also on a factorization scale µ.

3 Models for two-pion distribution amplitudes

In this section we describe briefly the main properties of
the distribution amplitudes introduced in (7) and (8) and
discuss a model which has been used to obtain estimates
for the magnitude of power-suppressed corrections.
Due to the positive C-parity of the pion pair, 2π dis-

tribution amplitudes have the following symmetry prop-
erties:

ΦQ(u, ξ,W 2) = −ΦQ(1− u, ξ,W 2) = ΦQ(u,−ξ,W 2),

ΦG(u, ξ,W 2) = ΦG(1− u, ξ,W 2) = ΦG(u,−ξ,W 2). (9)

The factorization scale dependence is governed by the
ERBL evolution equations [21,22]. As is well known, in
the leading logarithmic approximation their solution has
the form of an expansion in terms of Gegenbauer polyno-
mials:

ΦQ(u, ξ,W 2|µ) = 6u(1− u)

×
∞∑

n=1
odd

Bn(ξ,W 2|µ)C3/2
n (2u− 1), (10)

ΦG(u, ξ,W 2|µ) = 30u2(1− u)2

×
∞∑

n=0
even

An(ξ,W 2|µ)C5/2
n (2u− 1). (11)

The coefficients Bn and An mix under evolution.
In the next step one expands both distribution ampli-

tudes in the partial waves of the final two-pion system [12].
As a result one introduces an expansion of Bn(ξ,W 2|µ)
and An(ξ,W 2|µ) in terms of Legendre polynomials Pl(ξ)
[12,19]:

Bn(ξ,W 2|µ) =
n+1∑
l=0
even

Bnl(W 2|µ)Pl(ξ),

An(ξ,W 2|µ) =
n+2∑
l=0
even

AG
nl(W

2|µ)Pl(ξ). (12)

Additional constraints on 2π distribution amplitudes are
provided by soft pion theorems [12]:

ΦQ(u, ξ = 1,W 2 = 0) = ΦQ(u, ξ = −1,W 2 = 0) = 0,

ΦG(u, ξ = 1,W 2 = 0) = ΦG(u, ξ = −1,W 2 = 0) = 0.
(13)

Finally, crossing symmetry allows one to relate moments
of distribution amplitudes to forward matrix elements of
twist-2 operators which determine moments of pion quark
and gluon structure functions; see [12] for details. One
finds, e.g.∫ 1

0
du(2u− 1)ΦQ(u, ξ = 1,W 2 = 0) = − 1

Nf
MQ(1− ξ2)

∫ 1

0
duΦG(u, ξ = 1,W 2 = 0) = −1

2
MG(1− ξ2), (14)

where MQ and MG are the momentum fractions carried
by quarks and gluons in a pion:

MQ(µ) =
∫ 1

0
duu

∑
q

(qπ(u, µ) + q̄π(u, µ)),

MG(µ) =
∫ 1

0
duugπ(u, µ). (15)

At asymptotically large µ2 → ∞ only the lowest terms
in (10), (11) contribute. Combining constraints (14) with
(12) one easily finds

ΦG
as(u, ζ,W

2 = 0) = −15u2(1− u)2MG
as(1− ξ2),

ΦQ
as(u, ζ,W

2 = 0) = −30u(1− u) (2u− 1) 1
Nf

× MQ
as(1− ξ2). (16)

where

MQ
as =

Nf

Nf + 4CF
, MG

as =
4CF

Nf + 4CF
. (17)

For W 2 �= 0 one writes
ΦG

as(u, ξ,W
2) = −15u2(1− u)2MG

asB(ξ,W
2), (18)

ΦQ
as(u, ξ,W

2) = −30u(1− u)(2u− 1) 1
Nf
MQ

asB(ξ,W
2).

The function B(ξ,W 2) is related to coefficients B1 and A0
from (12)

B(ξ,W 2) = − 2
MG

as
A0(ξ,W 2|µ2 =∞)

= −3
5
Nf

MQ
as
B1(ξ,W 2|µ2 =∞). (19)

In the limit W 2 → 0 one finds from (14) that B(ξ,W 2 =
0) = (1− ξ2).
In numerical calculations presented in this paper we

have used a model which retains a simple analytical form
of the asymptotic distributions amplitudes (18), but incor-
porates nontrivial information about the pion structure at
a scale of the order of a few GeV2 [15]. Assuming domi-
nance of the lowest conformal wave one finds

ΦG(u, ξ,W 2) = −15u2(1− u)2MG(µ2)B(ξ,W ),

ΦQ(u, ξ,W 2) = −30u(1− u)(2u− 1) 1
Nf

× MQ(µ2)B(ξ,W ). (20)
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As at present a little is known about 2πDAs, the main mo-
tivation beyond the model (20) is that it incorporates all
constraints arising from crossing symmetry and soft pion
theorems and has a simple form which makes its treat-
ment in numerical calculations easy. Note that dominance
of the lowest conformal wave seems to be phenomenolog-
ically justified in the case of the single pion DA.
This model differs from the asymptotic DA (18) only

in values of momentum fractions MG(µ2) and MQ(µ2).
Their scale dependence is given by

MQ(Q2) = MQ
as
(
1 + L(Q2)R(µ2)

)
,

R(µ2) =
MQ(µ2)−MQ

as

MQ
as

, (21)

where L is the usual evolution factor:

L(Q2) =
(
αS(Q2)
αS(µ2)

)γ+/b0

, γ+ =
2
3
(Nf + 4CF ),

b0 =
11
3

− 2
3
Nf . (22)

Obviously, MG(Q2) = 1−MQ(Q2).
An explicit expression for B(ξ,W ) can be obtained

using the Watson theorem [12]. In the calculations con-
sidered here B(ξ,W ) enters as a Q2-independent factor
and therefore its explicit functional form is not important
for considerations of power-suppressed corrections to the
amplitude. To remove this factor from numerical calcu-
lations we will consider the Q2-dependence of the ratio
T γππ

0 (Q2, ξ,W 2)/T as
0 , where

T as
0 = T γππ

0 (Q2 =∞, ξ,W 2)

=
∑

q

e2q

∫ 1

0
du
2uΦQ

as(u, ξ,W
2)

1− u

= −15
14

∑
q

e2qB(ξ,W
2) (23)

is the asymptotic value of the amplitude.
In Fig. 1 we compare this ratio for the NLO amplitude

T pert
0 (Q2, ξ,W 2) for different models of 2π distribution
amplitudes: the asymptotic (18) and its minimal exten-
sion (20). Note that there is an ambiguity due to the scale
dependence of the NLO amplitude. In order to estimate
this uncertainty we make the following choice for the scale
µ:

µ2 = κQ2 +M2, (24)

withM2 = 1GeV2 and a parameter κ which will be varied
in the interval 1/5 ≤ κ ≤ 1. Such a choice is motivated by
the observation [18] that a typical virtuality of a propa-
gator in a perturbative, exclusive amplitude is given by a
weighted sum of the hard scale Q2 and the infrared cut-
off. In the LCSR approach the latter role is played by the
Borel mass M2; see the next section. Evaluating the NLO
amplitude (6) we have neglected numerically small NLO
corrections [23–25] to the evolution of the distribution am-
plitudes in the MS scheme.
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Fig. 1. NLO results for the T pert
0 (Q2)/T as

0 as a function of
Q2. The upper plot corresponds to the mimimal model with
MQ(1GeV2) = 0.60 and the lower one to the asymptotic choice
MQ = 0.43. The scale is taken as µ2 = κQ2 + M2, M2 =
1GeV2. Gray bands show the variation of the NLO prediction
when κ is varied between 1/5 and 1. Solid lines correspond to
κ = 2/5

One finds that in the model based on asymptotic dis-
tribution amplitudes the NLO correction is numerically
much larger than in the second model, where amplitudes
have the asymptotic form but a different, scale-dependent
normalization. This can be understood by observing that
the gluon distribution amplitude gives the main contribu-
tion to the NLO correction. At Q2 of order of few GeV2

its normalization in (20), based on the momentum frac-
tion carried by gluons in a pion according to the GRV pa-
rameterization [26] is much smaller than the asymptotic
one. The strong sensitivity of the NLO corrections to the
gluon distribution amplitude is an interesting feature of
the process considered here. Therefore we have to revise
one of our conclusions from [19], about the size of the NLO
correction. Contrary to our previous claim, its magnitude
turns out to be rather model dependent, and therefore it
is difficult to make a trustworthy prediction unless the dis-
tribution amplitudes which enter the NLO correction, in
particular the gluon one, are sufficiently constrained.

4 Light-cone sum rules method:
the LO approximation

In this section we discuss the light-cone sum rule (LCSR)
for the amplitude T γππ

0 . Our procedure closely follows the
investigation of the photon–pion transition form factor
Fγπ(Q2) in [17].
The first step to obtain a LCSR for the amplitude with

one real photon T γππ
0 is to consider an amplitude T γ∗ππ

0
where both photons are off-shell and have large virtuali-
ties:

γ∗(q) + γ∗(q′)→ 2π(P, k), Q2, Q′2 	 Λ2
QCD, (25)

and find its dispersion representation in the variable q′2.
In the general kinematics momenta q and q′ can be

represented in terms of vectors p and z as

q = − Q2

2σ(p · z)p+ σz, q2 = −Q2,



N. Kivel, L. Mankiewicz: Power corrections to the process γγ∗ → ππ in the light-cone sum rules approach 111

q′ = − Q′2

2α(p · z)p+ αz, q′2 = −Q′2. (26)

The coefficients α and σ are functions of the kinematical
invariants. Using momentum conservation one finds

α =
W 2

2(p · z) − σ, σ =
1

2(p · z) (q · (q + q′)−
√
X),

X = (q · q′)2 − q2q′2. (27)

With the help of the factorization theorem one can write
T γ∗ππ

0 as a convolution of hard and soft blocks. The vir-
tuality q′2 enters the hard part only, where we neglectW 2

as compared with Q2 and Q′2.
With q′2 �= 0 the two-photon amplitude admits natu-

rally a richer Lorentz structure than the original ampli-
tude with one photon on-shell. In addition, by splitting
Tµν into Lorentz tensors and invariant coefficient func-
tions it is advantageous to avoid kinematical constraints
for the latter. Constraints imposed on coefficient functions
result in constraints on the form of their dispersion repre-
sentation.
To this end we rewrite the transverse metric tensor in

terms of momenta q and q′ [3]:

Rµν(q, q′) = (−gµν)T = −gµν +
1
X
(q · q′(qµq′ν + qνq′µ)

− q2q′µq′ν − q′2qµqν), (28)

with X defined in (27), and introduce a variable ω

ω =
2P · q
q2

=
W 2

Q2 +
q2 − q′2

q2
� q2 − q′2

q2
. (29)

With these definitions it is convenient to introduce T γ∗ππ
0

by

Tµν = i
ω2

2
Rµν(q, q′)T γ∗ππ

0 (Q, q′, ξ,W ) + . . . , (30)

where the ellipsis denotes other possible Lorentz struc-
tures. Now, in the limit −q′2 → 0 (ω → 1) T γ∗ππ

0 , defined
here, goes smoothly into T γππ

0 given by (6). On the other
hand, the factor ω2 cancels the singularity present in the
tensor Rµν as q2 → q′2,W 2 → 0 (ω → 0) due to the 1/X
term, hence no constraints have to be imposed on T γ∗ππ

0 .
To the LO accuracy and keeping W 2 = 0 in the hard

block the amplitude T γ∗ππ
0 (Q, q′, ξ,W ) is the only one

which appears in Tµν and one obtains

T γ∗ππ
0 (Q, q′, ξ,W )

=

(∑
q

e2q

)∫ 1

0
dxΦQ(x, ξ,W 2)

2x
1− xω

=

(∑
q

e2q

)∫ 1

0
dxΦQ(x, ξ,W 2)

2xQ2

(1− x)Q2 − xq′2 . (31)

Note that the above expression depends on W through
the two-pion distribution amplitude (7).

The LO result can easily be converted into a dispersion
integral over q′2 with s = x̄Q2/x being the mass of the
intermediate state. Using the symmetry properties of the
quark DA one finds

T γ∗ππ
0 (Q, q′, ξ,W ) =

∫ ∞

0
ds
ρ0(Q, s, ξ,W )

s− q′2 , (32)

where

ρ0(Q, s, ξ,W ) = 2

(∑
q

e2q

)∫ 1

0
dxδ

(
x− Q2

s+Q2

)

× x2ΦQ(x, ξ,W 2). (33)

The next step is to rewrite the dispersion relation in the
q′2 channel assuming that the spectral density can be ap-
proximated by contributions of low-lying hadron states
ρ, ω and a continuum of higher-mass states with an effec-
tive threshold s0:

T γ∗ππ
0 (Q, q′, ξ,W ) =

√
2fρ

T ρππ(Q, ξ,W )
m2

ρ − q′2

+
∫ ∞

s0

ds
ρcont(Q, s, ξ,W )

s− q′2 . (34)

Here we have introduced the following notation for the
matrix elements:

〈ρ0|Jν |0〉 = 1√
2
fρmρε

∗
ν , (35)

〈ππ|Jµ|ρ0〉 = i
mρ

ω2

2
Rµν(q, q′)ενT

ρππ
0 (Q, ξ,W ) + . . .

ε∗ν , εν are the polarization vectors of the ρ meson. To in-
clude the ω meson we adopt the following approximate
relations:

mω � mρ, 3fω � fρ,

Tωππ
0 (Q, ξ,W ) � 3T ρππ

0 (Q, ξ,W ), (36)

which follow from the quark content of ρ and ω and from
the isospin symmetry.
The right-hand side (RHS) of (34) involves two un-

known functions: the form factor T ρππ
0 and the spectral

density ρcont. Assuming quark–hadron duality one can es-
timate the continuum spectral density as

ρcont(Q, s, ξ,W ) = θ(s > s0)ρ0(Q, s, ξ,W ), (37)

where ρ0(Q, s, ξ,W ) is the spectral density given in (33).
By keeping −q′2 large and combining (37), (34) and (31)
one obtains a LCSR for the form factor T ρππ

0 :

√
2fρ

T ρππ
0 (Q, ξ,W )
m2

ρ − q′2 =
∫ s0

0
ds
ρ0(Q, s, ξ,W )

s− q′2 . (38)

After perfoming a Borel transformation in −q′2 one finds
(M is the Borel mass):

√
2fρT

ρππ
0 (Q, ξ,W )

=
∫ s0

0
dsρ0(Q, s, ξ,W )e(m

2
ρ−s)/M2

. (39)
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Finally, substituting (37) and (39) into (34) results in

T γ∗ππ
0 (Q, q′2, ξ,W ) =

1
m2

ρ − q′2

×
∫ s0

0
dsρ0(Q, s, ξ,W )e(m

2
ρ−s)/M2

+
∫ ∞

s0

ds
ρ0(Q, s, ξ,W )

s− q′2 . (40)

The above representation allows one to perform an ana-
lytical continuation to the point q′2 = 0. In this way one
arrives at a LCSR for the amplitude with one real photon:

T γππ
0 (Q, ξ,W ) =

1
m2

ρ

∫ s0

0
dsρ0(Q, s, ξ,W )e(m

2
ρ−s)/M2

+
∫ ∞

s0

ds
s
ρ0(Q, s, ξ,W ). (41)

It is convenient to rewrite this formula going back to an
integral over the fraction x = Q2/(s + Q2). Introducing
x0 = Q2/(s0 +Q2) and x̄ ≡ 1− x one finds

T γππ
0 (Q, ξ,W ) =

2Q2

m2
ρ

(∑
q

e2q

)∫ 1

x0

dxΦQ(x, ξ,W 2)

× exp
{
xm2

ρ − x̄Q2

xM2

}

+

(∑
q

e2q

)∫ x0

0
dx

2x
1− xΦ

Q(x, ξ,W 2). (42)

Consider now the limit Q2 → ∞. In this limit x0 = 1 −
s0/Q

2+O(1/Q4). The integration region in the first term
in the RHS (42) shrinks to the point x = 1 and one obtains

2Q2

m2
ρ

∫ 1

x0

dxΦQ(x, ξ,W 2) exp

{
xm2

ρ − x̄Q2

xM2

}

=
2s20
Q2m2

ρ

ΦQ
x (1, ξ,W

2)
∫ 1

0
dxxe(m

2
ρ−xs0)/M2

+O(1/Q4), (43)

where ΦQ
x (1, ξ,W

2) ≡ (d/dx)ΦQ(x, ξ,W )|x=1.
As has been discussed at length in the literature, (43)

can be interpreted as the so-called “end-point” contribu-
tion which arises from large transverse dinstances between
two photons in the hard block [18,27]. In general, the 2π
distribution amplitude ΦQ(x, ξ,W 2) depends also on the
factorization scale µ which separates large and short dis-
tances. As x ∼ 1 the quark virtuality (the magnitude of
the quark denominator in (31)) is of order of the Borel
mass M . Therefore the two-pion DA in (43) should be
evaluated at a low normalization point, of order of M .
In Fig. 1 we show an average value of the momentum

fraction x in the integral (42) calculated as a function of
Q2. One observes that the mean value of x in (42) is indeed
close to 1.

As Q2 → ∞ the second term in the RHS of (42) gives∫ x0

0
dx

2x
1− xΦ

Q(x, ξ,W 2) =
∫ 1

0
dx

2x
1− xΦ

Q(x, ξ,W 2)

+ O(1/Q2). (44)

It reproduces the leading-order, leading-twist factoriza-
tion formula when q′2 = 0 in (31) and provides correct
asymptotics for very large Q2. The power correction is
suppressed as 1/Q2.
The LO sum rule (42) results in an expression for the

amplitude T γππ which includes contributions from both
the “end-point” region x ∼ 1, associated with large trans-
verse distances, and from small transverse distances where
the qq̄ pair is created by two photons in a compact config-
uration. From the sum rule it follows that the “end-point”
contribution is suppressed by 1/Q2 as compared with the
LO factorization result, i.e. it has the same order as fac-
torizable higher-twist corrections. Despite formal power
suppression, the “end-point” contribution can be numer-
ically important for realistic values of Q2. Our numerical
analysis suggests that the sum rule (42) can be applied
for the description of the amplitude T γππ starting from
moderate momentum transfers Q2 ≥ 1GeV2.

5 Radiative corrections

In principle, the sum rule (42) can be improved in a
twofold way: by including the NLO αs and higher-twist
corrections to the spectral density (33). In this section
we consider the NLO contribution. Taking into account
higher twists requires knowledge of the corresponding two-
pion distribution amplitudes which are not known yet.
One-loop corrections for the real photon case have been

considered in [19]. In the current situation one should cal-
culate the coefficient functions in the kinematics when
both photons are virtual. One should also keep in mind
that at the NLO diagrams with gluons enter the game. As
in [19] one can use crossing symmetry to derive coefficient
functions from the corresponding coefficient functions in
the DVCS kinematics, as computed in [28–30]. The cal-
culation is straightforward. The NLO amplitude can be
written in the standard form:

T γ∗ππ
0 (Q, q′, ξ,W ) =

∑
q

e2q

(∫ 1

0
dxΦQ(x, ξ,W 2)

×
[
C0

q (x, ω) +
αS(µ2)

4π C1
q (x, ω, µ)

]
−
∫ 1

0
dxΦG(x, ξ,W 2)

[
αS(µ2)

4π C1
g (z, ω, µ)

])
. (45)

The coefficient functions C0
q , C

1
q and C

1
g are collected in

the Appendix.
As in the LO case, the virtuality q′2 enters only

through the variable ω. It is convenient to rewrite (45)
in the form which resembles the structure of the LO an-
swer (31):

T γ∗ππ
0 (Q, q′, ξ,W ) =

∫ 1

0
dx
xρ(x, ξ,W 2)
1− xω , (46)
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with

ρ(x, ξ,W 2) = ρ0(x, ξ,W 2) +
αS(µ2)
4π

ρ1(x, ξ,W 2). (47)

As in (31)

ρ0(x, ξ,W 2) = 2
(∑

e2q

)
ΦQ(x, ξ,W 2). (48)

The NLO correction ρ1(x, ξ,W 2) can be obtained from
the corresponding coefficient functions (45):

∑
e2q

∫ 1

0
dx
[
ΦQ(x, ξ,W 2)

1
π
Imq′2C1

q (x, ω)

−ΦG(x, ξ,W 2)
1
π
Imq′2C1

g (x, ω)
]

= u2ρ1(u, ξ,W 2)|u=1/ω, (49)

where Imq′2 denotes the imaginary part with respect to
the variable q′2, considered here as a complex variable with
positive real as well as (infinitesimal) imaginary parts.
With such a definition the structure of the NLO LCSR

for the amplitude T γππ
0 remains the same as the LO one:

T γππ
0 (Q, ξ,W ) =

Q2

m2
ρ

∫ 1

x0

dxρ(x, ξ,W 2)

× exp
{
xm2

ρ − x̄Q2

xM2

}

+
∫ x0

0
dx

x

1− xρ(x, ξ,W
2). (50)

As in the case of the LO sum rule (42), as Q2 → ∞ (50)
reproduces the perturbative expansion of the T γππ

0 am-
plitude, including the NLO corrections [19]. The power
correction is suppressed as 1/Q2.
As an illustration, we quote now the form of ρ1(x, ξ,

W 2) in the case of the “minimal model” (20):

ρ1(x, ξ,W 2) =
∑

e2qB(ξ,W
2)
{
ln(µ2/Q2)ρ10(x, µ2)

+ ρ11(x, µ2)
}
,

ρ10(x, µ2) = (−40)x(1− x)(2x− 1)R(µ2),
ρ11(x, µ2) = ρas(x) +R(µ2)[ρas(x) +D(x)], (51)

where R(µ2) is defined in (21). The function D(x) is a
shorthand notation for

D(x) = −10
3
[2x̄(1− 6x)

+ xx̄(2x− 1)(31 + 12 ln(x/x̄))]. (52)

Taking for MQ the asymptotic value (17) results in R(µ2

=∞) = 0 and
ρ1(x, ξ,W 2) = B(ξ,W 2)ρas(x), (53)

where

ρas(x) =
−20CF

Nf + 4CF
x(1− x)(2x− 1)

× (π2 − 17− 3 ln2(x/x̄)). (54)

In this case ρ1 has no dependence on µ.
Before evaluating the sum rule one has to provide an

estimate of the factorization scale µ. This is a standard
problem in a calculation based on the fixed-order pertur-
bation theory. Note that the scale of the perturbative ex-
pansion µ2 ∼ Q2 is different from the characteristic scale
of soft, “end-point” contributions µ2 ∼ M2. As a con-
sequence, the correct treatment of the sum rule requires
applying various normalization scales to various terms in
(50). To avoid confusion, we propose the following pro-
cedure. One separates the perturbative contribution and
writes the final formula in the form

T γππ
0 (Q, ξ,W ) = T pert

0 (Q, ξ,W )

+T non-pert
0 (Q, ξ,W ). (55)

T pert
0 is the perturbative amplitude (6), which can be rep-
resented as

T pert
0 (Q, ξ,W ) =

∫ 1

0
dx

x

1− xρ(x, ξ,W
2). (56)

The scale in this term is set by the hard photon virtual-
ity Q2. The second term should, as a matter of fact, be
considered as the proper light-cone sum rule result:

T non-pert
0 (Q, ξ,W ) =

∫ 1

x0

dxρ(x, ξ,W 2)

×
[
Q2

m2
ρ

exp

{
xm2

ρ − x̄Q2

xM2

}
− x

1− x

]
. (57)

Here the integration region is restricted to x0 ≤ x ≤ 1.
As discussed in the previous section, this term should be
evaluated at a low normalization point ∼ M2.
Of course, when evaluated at the same normalization

scale, the sum of (56) and (57) reproduces the original
sum rule (50).

6 Numerical results

In the subsequent numerical analysis the following input
has been used: the threshold parameter s0 = 1.5GeV2

has been taken from the two-point sum rule [31]. This
sum rule is reliable for the corresponding Borel parame-
ter M2

2pt = 0.5–0.8GeV
2. In the light-cone sum rules it

should be larger to compensate for the fact that the effec-
tive expansion parameter is given by the inverse power of
xM2. In this case a typical choice is M2 ∼ M2

2pt/〈x〉 [17,
18]. We assume that 0.6 ≤ M2 ≤ 1.2GeV2 is a reasonable
interval. In addition we have checked that changing s0 by
±0.2GeV2 does not produce any sizable effect.
We remind the reader that in the present investiga-

tion we have neglected higher-twist contributions to the
sum rule for T γ∗ππ

0 . They are, as usual, suppressed by ad-
ditional powers of the Borel parameter. To obtain their
contribution one should know two-pion distribution am-
plitudes of higher twists which have not yet been stud-
ied. In the case of photon–pion transition form factor [17],
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Fig. 2. Average momentum fraction x as a function Q2. We
take M2 = 0.9GeV2 and s0 = 1.5GeV2; see the explanation
in the text
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Fig. 3. Ratio T non-pert
0 /T as

0 as a function of M2 for Q2 =
1GeV2 (short-dashed), Q2 = 3GeV2 (long-dashed) and Q2 =
10GeV2 (solid line)

the contribution of such terms to the non-perturbative
(power-suppressed) part is about 30–35% of the leading-
twist contribution for the low Q2 ∼ 1–2GeV2. Qualita-
tively, the same picture should hold also in the present
case.
All numerical results have been obtained with the

model (20) for the 2π distribution amplitude. We have
used the quark momentum fractionMQ(0.6GeV2) = 0.63
taken from the GRV parametrization [26]. We have kept
Nf = 4 which results in MQ

as = 0.43.
In all calculations we have used ΛQCD = 0.204GeV

and one-loop running coupling αS(1GeV2) = 0.47.
In the numerical analysis one has to specify the factor-

ization scale. Since after subtraction of the perturbative
amplitude T non-pert

0 (Q, ξ,W ) is dominated by the “end-
point”, soft contributions, we apply here a fixed, low scale
µ2 ∼ M2.
To estimate the ambiguity due to the scale dependence

in T pert
0 (Q, ξ,W ) we parameterize µ2 according to

µ2 = κQ2 +M2, (58)

with a parameter κ which varies in the interval 1/5 ≤ κ ≤
1.
We consider values of Q2 in the physically interesting

interval 1GeV2 ≤ Q2 ≤ 10GeV2.
To cancel the influence of the overall factor B(ξ,W 2),

in the following we always plot the ratio of T γππ
0 (Q2, ξ,

W 2) to its asymptotic value at Q2 =∞ (23).
The Borel parameter dependence of the ratio T non-pert

0 /
T as

0 is shown in Fig. 3. We find that theM2 dependence is
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Fig. 4. Ratio T non-pert
0 /T as

0 as a function of Q2. Short- and
long-dashed lines correspond to M2 = 0.6 and 1.2GeV2, with
µ2 = M2, respectively. The solid line (M2 = 0.9GeV2) repre-
sents the parametrization (59)
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Fig. 5. The ratio T γππ
0 /T as

0 as a function of Q2 (solid line).
Short-dashed line represents T γππ

0 /T as
0 with µ2 = 2/5Q2 +

1GeV2. The long-dashed line represents T non-pert
0 /T as

0 with
µ2 = M2 = 0.9GeV2. The solid line is the sum of both

sufficiently flat to justify the use of LCSRs, although for
lower values of Q2, where power corrections are increas-
ingly important, the dependence on the Borel parameter
becomes stronger. Assuming that the uncertainty arising
from the Borel parameter dependence should not exceed
30% for the T non-pert

0 , we estimate that the sum rule (42)
provides a reasonable description of T γππ

0 starting from
Q2 ≥ 1GeV2.
In Fig. 4 we show the ratio T non-pert

0 (Q2)/T as
0 obtained

from the light-cone sum rule (57) for different values of the
Borel parameterM2. One observes that in the whole inter-
val of Q2 considered here the sum rule calculation is rather
stable with respect to variation of the Borel parameter
within a reasonable interval. In accordance with expec-
tations, the non-perturbative correction becomes smaller
with increasing Q2. By fitting a simple formula we found
that for the value of the Borel parameter in the middle
of the interval, M2 = 0.9GeV2, and in the Q2 region
1 ≤ Q2 ≤ 10GeV2, T non-pert

0 /T as
0 can be parameterized

as

T non-pert
0 (Q2)/T as

0 =
−1.5 + 0.05Q2 + 0.015Q4

1 +Q2 + 0.3Q4 , (59)

with Q2 in units of GeV2; see the solid line in Fig. 4.
In Fig. 5 we present perturbative and non-perturbative

contributions to the ratio T γππ
0 /T as

0 as a function of Q2.
T non-pert

0 is calculated with M2 = 0.9GeV2. The non-
perturbative corrections is numerically significant only in
the region Q2 ≤ 4GeV2. For higher values of Q2 the am-
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plitude is dominated by the NLO leading-twist contribu-
tion.

7 Summary and conclusions

The main result of this paper is the numerical estimate
of the power-suppressed correction to the leading-twist
helicity-conserving amplitude of the process γ∗γ → ππ.
The light-cone sum rules technique allows one to circum-
vent difficulties due to non-factorizability of the power-
suppressed terms. Although formally our analysis is not
complete, as we have neglected contribution of higher-
twist operators to the amplitude of two-pion production
in a collision of two virtual photons, we believe that the
general picture is reliable, at least qualitatively. Power cor-
rections are increasingly important with decreasing Q2 for
Q2 ≤ 4GeV2, and become about 50% of the leading-twist
amplitude at Q2 = 1GeV2.
Our final result for the helicity-conserving γ∗γ → ππ

amplitude is shown in Fig. 6. The grey bound indicates
uncertainty due to the linearly combined Borel parame-
ter and the factorization scale variations. One finds that
starting from Q2 around 4GeV2 the twist-2 contribution
approximately saturates the amplitude. This observation
suggests that the cross-section of the process γ∗γ → ππ
can be accurately predicted in QCD for given models of
2π distribution amplitudes.
Assuming dominance of the lowest conformal wave, we

have found that the helicity-conserving amplitude is very
sensitive to the normalization of the gluonic 2π distribu-
tion amplitude. This observation, combined with crossing,
makes it plausible to use γ∗γ → ππ to constrain the mo-
mentum fraction carried by gluons in a pion.
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Appendix

A Coefficient functions

To the NLO accuracy the amplitude T γ∗ππ
0 can be repre-

sented as a standard convolution of 2π distribution am-
plitudes with the hard scattering coefficients:

T γ∗ππ
0 (Q, q′, ξ,W ) =

∑
q

e2q

(∫ 1

0
dxΦQ(x, ξ,W 2)

×
[
C0

q (x, ω) +
αS(µ2)
4π

C1
q (x, ω, µ

2/Q2)
]

−
∫ 1

0
dxΦG(x, ξ,W 2)

[
αS(µ2)
4π

C1
g (z, ω, µ

2/Q2)
])
,

(A.1)
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Fig. 6. The LCSR prediction for the ratio T γππ
0 /T as

0 as a func-
tion of Q2. The grey band shows the sensitivity of our result to
a variation of the Borel parameter within 0.6 ≤ M2 ≤ 1.2GeV2

and the factorization scale according to formula (58)

where ω has been defined in (29). The coefficient functions
in the MS scheme read

C0
q (x, ω) =

2x
1− xω , (A.2)

C1
q (x, ω, µ

2/Q2) = CF

[
ln(µ2/Q2)[C10

q (x, ω)

−C10
q (1− x, ω)] + C11

q (x, ω)− C11
q (1− x, ω)] ,

C10
q (x, ω) = − 3

(1− xω)ω − ln(1− ω)2(1− ω)
x̄ω2

×
(

1
1− xω − 1

ω

)
+ 2
(1− ω)
1− xω

ln(1− xω)
x̄ω2

+2
ln(1− xω)
xx̄ω2

[
1− xω
ω

− x̄

1− xω
]
, (A.3)

C11
q (x, ω) =

1
(1− xω)ω

[
−9 + 2

xω
ln2(1− xω)

− 3
xω
ln(1− xω) + 3

xω
ln(1− ω)− 1

xω
ln2(1− ω)

]

+
3
x̄ω2 ln(1− xω)− 3

xx̄ω2 ln(1− ω)

+(x− 1− 1/ω) ln
2(1− xω)
xx̄ω2

+(1− x+ x/ω) ln
2(1− ω)
xx̄ω2 , (A.4)

C1
g (x, ω, µ

2/Q2) = ln(µ2/Q2)C10
g (x, ω) + C

11
g (x, ω),

(A.5)

C10
g (x, ω) =

(−2)
w4(xx̄)2

×{(1− ω + [1− xω]2) ln(1− xω)
+(1− ω + [1− x̄ω]2) ln(1− x̄ω)
−(2− ωx2 − ωx̄2)(1− ω) ln(1− ω)} , (A.6)

C11
g (x, ω) =

1
w4(xx̄)2

{a1(x, ω) ln(1− ω)

+a2(x, ω) ln2(1− ω) + c1(x, ω) ln(1− xω)



116 N. Kivel, L. Mankiewicz: Power corrections to the process γγ∗ → ππ in the light-cone sum rules approach

+c1(x̄, ω) ln(1− x̄ω) + c2(x, ω) ln2(1− xω)
+ c2(x̄, ω) ln2(1− x̄ω)} ,
a1(x, ω) = 8 + 4ω(x− 3− x2) + 4ω2(1− x+ x2),
a2(x, ω) = −2 + ω(3− 2x+ 2x2)− ω2(1− 2x+ 2x2),
c1(x, ω) = −8 + 4ω(1 + 2x)− 2ω2x(1 + x),
c2(x, ω) = 2− ω(1 + 2x) + ω2x2. (A.7)

Here we used the shorthand notation x̄ ≡ 1−x. Note that
the physical amplitude does not have a singularity (pole)
when ω → 0 and therefore all coefficient functions must
be well defined in this limit:

C1
q (x, ω, µ

2/Q2) = CF

[
ln(µ2/Q2)

8
3
(2x− 1)

+ (1− 2x)] +O(ω), (A.8)

C1
g (x, ω, µ

2/Q2) = ln(µ2/Q2)
4
3
+
7
3
+O(ω).
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